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SECTION 1

INTRODUCTION

There exists in the literature several papers on the flight
mechanics of reentry vehicles. Unfortunately, there is little

in the literature that focuses on the ascent performance of a

booster configuration from launch to apogee. Consequently,

there is a need for both approximate analytical and exact

numerical trajectory solutions. The former could be used for

preliminary design purposes. The latter could be used for

performance trade-offs of finalized configurations.

This investigation has two objectives. The first is to

develop approximate analytical trajectory solutions. The second

is to determine optimal trajectories for a specified criterion.

Numerical results will be for a specific configuration. The

approximate solutions are segments for an ascent trajectory that
can be patched together to yield a complete ascent trajectory.

The segments are maximum lift with power-on, constant flight

path with power-on, and zero angle-of-attack with both power-on

and power-off. For the optimal trajectories, the payoffs are

maximum speed at burnout or apogee and minimum fuel or time to

reach apogee.

In Section II, the assumptions employed in the investiga-

tion are presented. Sections III and IV contain the approximate

and optimal trajectory results.

1r-
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SECTION 
II

ASSUMPTIONS

Spherical Symmetry

The modeling of the atmospheric density and the accelera-

tion of gravity can be greatly simplified if it can be assumed

that: 1) the density is a function of only the altitude and 2)

the acceleration of gravity is a function of only the radial

distance from the center of the planet. The earth's surface is

". an oblate spheroid of eccentricity 0.00335. The ratio of the

radius at the poles to that at the Equator is 0.99665. The

difference in the surface radius at the equator and either pole

is approximately seventy thousand feet. The ratio of the ac-

celeration of gravity at the poles to that at the equator is

approximately 1.0018. For the purpose of this effort, it suf-

fices to treat the earth as spherical

The acceleration varies inversely proportional as the

square of the radius from the center of earth. The nominal

thickness of the earth's atmosphere is of the order of 275,000

feet. The ratio of the acceleration of gravity at the outer
edge of the atmosphere to that at the earth's surface is ap-

proximately 0.972. In this study the acceleration of gravity

will be assumed to be constant. The sea level value of 32.174

feet/second/second will be used.

Exponential Atmosphere

The relationship for the rate of change of density with

respect to altitude can be approximated by

dp

-h BP (1)

where
S



gM I dT
B = - = - (2)

RT T dh

The density relation is exact across layers where the tempera-

ture is constant. In layers where the temperature is linear

with respect to altitude, Equation (1) is approximate. If an

approximate value is used across the latter layer, then Equation

(1) takes on the following from for all layers.

B(h - hR)
p= D e (3)

Let

y =lnp, A = ln pRe hR) (4)

Then Equation (3) can be rewritten as

y = A + Bh (5)

Approximation for A and B can be determined by doing regression

analysis on Equation (5). Using the 1962 U.S. Standard

Atmosphere as the basis gives the results in Table 1.

The accuracy of these approximations are presented in Table 2

where the error is defined as

0ACT - 0THEOR
% ERROR = xl000ACT

and aACT is the 1962 density ratio and a THEOR is the approximate

value. The assumed form for the density ratio for the sub-

sequent performance analysis is

Bh + A (6)
= e (6.

. ., € 2 ;- ..,£ '2 ... .'..'.' .' ..'." -. .. -. . . .. . .-. 3.. . -j..l ..



Aerodynamic Data

For high speed trajectory analysis it will be assumed that

the aerodynamic coefficients can be predicted by Newtonian

theory. This theory is based upon the assumption that the

pressure at any point on the windward side of the vehicle can be

predicted by

C = K(n-i) 2  (7)
p

Let the scaler product be defined by sing ,then

C = ksin 2 6 (8)~p

The drag and lift components due to the pressure force are

evaluated from

C(kn) dA (9)
q

Since

kn =cos& (11)

Equations (9) and (10) become

L
q K sinZ8cos~dA (12)

- K sin3&dA (13)

If the angle & is constant everywhere over the vehicle then the

drag and lift coefficients become

4
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C -- - Ksin 2 6cos6 (14)L qA

D
C - - Ksin 3 6 (15)CD -qA

An additional component should be added to the drag coefficient

to account for bluntness and viscous effects, thus

CD = Ksin 3 6 + CD (16)
0

The increment C is a strong function of nose bluntness and

generally is also altitude dependent.

The approximation is going from Equations (12) and (13) to

Equations (14) and (15) is presented in the appendix where

6 = + X (17)

Seven different configurations were examined. The correlation

shows that Equations (14) and (16) are adequate for the purpose
of this investigation.

Previous studies have shown that for reentry trajectory

analysis, the lift-to-drag ratio is an important parameter. For

ascent performance, the lift coefficient versus angle-of-attack

is an important function for high thrust to weight rocket en-

gines. Consider the aerodynamic ratio E defined by

L Ksin 26cos6 sin 2cos&
E -(18)D Ksin 3 + CD  sin3& + C

0

where

CD
0

K (19)

/ . _ .. " . , ?. , . , .- , *. p, o, . ,



The maximum value of L/D, E , is obtained by optimizing with
respect to 6. Differentiating Equation (18) with respect to &

and setting the resulting expression equal to zero gives the

necessary condition for E*

sin 3&A + 3Csin 2& * - 2C = 0 (20)

This equation can be easily solved for & as a function of C.

In general, however, we are interested in determining the

parameters & and C as a function of E Solving Equation (18)

for C gives

C -.sin2 8cosS - sin3 & (21)
E

Substituting Equation (21) for C into Equation (20) gives a

relation between E and 8

2 -3sinZ (6A E*E 3sin *cos(2

Using double angle formulas, this reduces to

- + cos &3
EA = (23)

This is easily solved for 8 as a function of E

-5 + 2E* ~ +21/

cos 2 = (24)
2(E + 1)

Given E , S is determined from Equation (24) and C is obtained

from Equation (21). These parameters and the ratio of CD at &A

to CD are presented in Table 3.
0

•..... ... -. .. ............. .. . ...



For a parabolic polar, CD( )/CD is 2.

The maximum value of the lift coefficient is obtained from

optimization of Equation (14) with respect to S. The necessary

condition is

2sin6cos 2S - sins = 0 (25)

The solution for & is

S sin 1 (2/3) /2 = 54.740 (26)

The value of maximum CL is

C = 0.3849K (27)
LM

In Figures 1 through 3, the aerodynamic parameters are

presented. In Figures 1 and 3, & equals x.

The drag coefficient can be written in polar form by

eliminating 6 from the CL and CD relations. Expanding Equation

(14) gives a cubic equation in sinZ S. The solution of this

cubic equation is

1

sin2 & --j(l -cosp + j3sinp) (28)

where

1 27 . CL
--5 "cos [ - - (29 )

Substituting for sina in Equation (16) gives

.4
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3/2

CD = CDo + K k.(I- cosp + J3 sinp)] (30)

For small values of CL/K, the parameters become approximately

sins =J]K- (31)

CL

CD = C + K l2 (32)
o K

The optimal value tor CL is

* 1/2 2/3
C =(2K C ) (33)LD

At
The optimal value for CD is

C 3C (34)D D

The maximum value of E is

Z/3

E = - (35)

. In Table 4, exact aerodynamic parameters from Equations (14) and

(16) and approximate values from previous relations are

presented. It can be seen that a polar of the form in Equation

(32) gives fairly good agreement for E when E is greater than

1.5. If the trajectory requires very accurate data for CL and

CD, then the approximate relations should not be used. Accurate

data should be used with accurate interpolation techniques

employed.

-C4
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Propulsion Characteristics

Rocket propulsion characteristics will be used for the

performance analysis. The mass burning rate is determined from

HPROP

= t (36)tB
,

The burn time, tBf is determined from

ITOTAL
tB T (37)

where ITOTAL is the total impulse and has units (force)x(time).

Table 5 presents propulsion characteristics for several

boosters. The speed change, AV, corresponds to the gravity free

solution in a vacuum.

Equations of Motion

From Reference 2, the equations of motion for the trajec-

tory analysis are

dv 1
dt - -F - gsiny + W rcoso(sinycoso - cosysin~isino) (38)

dy 1 V2

Vdt M FNcosc - gcosy + r-cosy + 2wV cos4 coso

(39)
2+ W rcoso(cosN coso + siny sin sino)

d4 1Ns V"
Vd- c - - - -cosycosttano + 2WV(tanysinicoso)

(39)
2 r

.

wzr
- sino) - -. cos4sinocosOcosy

dr

dt- Vsiny (41)

'44

dt. . . . .



de VcosycosW

H - rcoso (42)

do Vcosysin$
- (43)dt r

FT = Tcos(. + 6 - D (44)

FN = Tsin(x + Sv) + L (45)

Some ot the terms in Equations (38) through (40) can be dropped.

The transport acceleration, w r, is less than 0.4 percent of the
acceleration of gravity. The Coriolis acceleration, 2wV, is

approximately eleven percent of the acceleration of gravity and

therefore is important for long range high speed flight. For

low speed, short range trajectory, this term can be neglected.

For example, a boost and coast to apogee trajectory can neglect

the earth's rotation. Also for boost and coast to apogee

problems, the term VZ /r in Equations (39) and (40) can be

neglected since these types of trajectories are over short

ranges. Thus, the earth can be treated as flat.

In the next section, we turn our attention to the boost and

coast to apogee problems.

I0



SECTION III

NOMINAL BOOST AND CLIMB PERFORMANCE

Both ground launches and air launches are important

problems. The primary difference between them is the boundary

conditions. Ground launch initial conditions are zero speed and

ninety degree launch angles. Air launches correspond to the

speed of the launch platform and zero flight path angle. This

effort has concentrated on air launches only.

A typical trajectory consists of the separation from the

carrier, propulsion ignition, pitch up to a specified attitude,

and then an acceleration to burnout. This may be followed by

the separation of the booster and then a second boost to a

second burnout. After the boost phase or phases, the vehicle

coasts and decelerates to apogee. An impulse may follow to give

the desired orbital speed.

Five diffeent boost and climb segments are of interest.

They are as follows:

a. maximum lift, power-on

b. constant fliqht path, power-on

C. zero angle-of-attack, power-on

d. zero angle-of-attack, power-otf

e. optimum boost climb

The last problem is addressed in Section IV. This problem

is difficult and merits attention in a section by itself. The

difficulty is determining the optimal controls. The first tour

L i
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make up a typical sequence from launch to apogee. Each of the

first four problems is solved in the following subsections.

Flight is in the equational plane and the earth's rotation

is neglected. The equation for the rate of change of r, r, is

replaced with the time rate of change of the density. The

result is

a = BaVsiny (46)

where B is defined in Equation (6). The remaining differential

equations are

T
= (47)Isp

1

=u.FT - gsiny (48)

1 g
y = -'F- -'cosy (49)

my N V

V
e = -. Cosy (50)r

where

FT = Tcos(L + S v ) - D (51)

= Tsin(. + & ) + L (52)N v

Nondimensional transformation are introduced in order to

normalize the variables to the order of one. Let

U V/V(o), w = W/W(o), 0 = t/ 153).

We are free to select the reference time, tR* The differential

equations become I
12j



a = au siny (54)

W -X ( 55)

u = X 3( -cosS - d - siny) (56)

S 3 T

Y = - (--sin + n - cosy) (57)
uw

e = X ucosy (58)

where

= tRBV(O) (59)

tRT WPROP

2 W(O)IsP - 0) (60)"

gtR

= (61)
3 V(0)

Vl0)t R

-=(62)
R

6 = X + 6 (63)
V""

D L T
d=- n = T (64)

In Equation (50), r has been approximated by R. in Equation

(62), the parameter x4 is very small. Thus the change in the

downrange is small. In Equations (54) through (58), differen-

tiation is with respect to the nondimensional time 8.

The approach is to develop approximate closed form solu-

tions for the different trajectory segments. These approximate

solutions are compared with the exact solutions obtained by

numerical integration of the differential equations of motion.

13
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This comparison offers some evidence as to the fidelity of the

approximate solutions. As expected, some accuracy is lost

through introducing assumptions that make it possible to

analytically integrate the differential equations. But, one

advantage is that an approximate solution can be easily obtained

through substitution of specific values for the parameters. We

turn our attention to the first problem. The booster charac-

teristics correspond to configuration 17 in Table 5.

Maximum Lift, Power-On

This segment corresponds to the initial rotation after

launch. The initial conditions are the launch conditions. The

terminal conditions are free. Integrating Equation (55) gives:

w = 1 - (65)

Assume that the flight path angle is small and the angle-of-

attack is constant. Also, assume that the change in the drag

*coefficient is negligible, which is a questionable assumption,

and the change in the density is negligible, which is

reasonable. Then the drag ratio in Equation (64) is ap-

proximately

2
u

d = -- d(O) (66)
W

Equation (56) is approximately

A

u --. [TCOS6 - u2d(0)] (67)

Ccmbining with Equation (55) and integrating gives

) 4
.1'



+1 -A
5 i -ir

5
U+ (68)

5 6 - +

5

where

Jrcos& A3  ____

A 5 = Jd(0 ",A =2- -J.d(0)cosS (69)
2

In a manner like that for d, n is approximately

2
U

n = n(o)- (70)

At high angles-of-attack, the right side of Equation (57) is

approximately n, since

T

n >> --'sins -cos-v (71)

Combining approximate forms for Equations (56) and (57) gives

dy n(O)u (72) 1
du : cos6 - d(0)u2  (2

Integrating gives

I f T
N = y(O) - E()lnf (73)

-~~T EOlf( _)

where

n(0) L(0) CL(0)
E(O) = d(0) -D(0) -CD(0) fT = TcosS - d(0)u2  (74)

Combining Equations (54) and (56) gives approximately

15



X ouy
do 1 (75)

du 3 [ cosS - d(O)uZ]

If the change in the weight is neglected, i.e., assume w = 1,

then Equation (75) can be integrated

a 1 X 1 1 f T
n -Y(O) + - E(O)inft(0)Iln

n(0) 2d(O) X 2 t

(76)

E(O).in 11
+ 8d(O)x 3{[lnfT] _ fT 0 )]2

Combining Equations (58) and (56) gives approximately

d u (77 )
d u x [ c o s & - d (O )u 2]

Assuming w = 1 permits integration

S1 A fT
1 4 fT

e = 8(0) -in f(0) (78)-2d(0) f T(0

In Table 6, the comparison between the exact and ap-

proximate solutions is presented for the first ten seconds. The

flight path reached approximately thirty degrees. In light of

the fact that the exact solution included acceleration through

the transonic region, the agreement is quite good. The density

used in the results correspond to tabular values rather than

Equation (6:. Equation (6) gives a lower density, approximately

5.5 percent. Using this approximate value in the equation for

d(o) results in little difference for the speed, altitude, and
downrange. But the flight path angle is lower by approximately

16



5.5 percent. The drag and lift coefficients are the initial

values.

Constant Flight Path, Power-On

This is a path that could be followed once the initial

rotation is completed. The objective for this type of trajec-

tory is to establish an attitude or flight path angle that will

result in attaining specified apogee conditions. Generally, the

angle-of-atcack is small since high longitudinal accelerations

are desired for constant flight path angles. Equation (57)

gives

Tsin6 + wn = wcosy(0) (79)

The right side decreases with increasing time; therefore, the

angle-of-attack must decrease as the speed increases. The

initial conditions are those at the beginning of the segment

which are the final conditions at the end of the previous seg-

ment, e.g., the initial rotation.

It is assumed that the change in the drag in Equation (56)

is negligible. Combining Equations (55) and (56) and integrat-

ing gives

x3 X3

u = 1 - c [LCOS - d(0)]in w + --.(w - l)siny(0) (80)
22

Combining Equations (54) and (55), substituting Equation (80),
and then integrating gives
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A

in ;--sin(O) - 1) - --. [cos& - d(O)I (0) x2 nyO 1 z(1

A

1 1 32 X2
[lw- (w - 1)+ -(W - 1)25in-y(O)}

Combining Equation s(58) and (54) and integrating gives

A

4 a
. = 0(0) + --.coty(O)-In ;(O)(82)

The exact and approximate solutions are presented in Table

7. The agreement is surprisingly good in light of the assump-

*- tion made about the drag.

Zero Angle-of-Attack, Power-On

Along this path, the lift is zero and the drag coefficient

is minimum since CD equals CD . This corresponds to maximum
0

acceleration, at least on a point performance basis. Over the
total segment, however, the integration of the drag may be

larger relative to positive angles-of-attack. This is at-

tributed to the fact that a zero angle-of-attack trajectory is

lower in the atmosphere; thus, the dynamic pressure may be

higher.

It will be assumed that the change in CD is negligible and
0

the flight path angle is small. The flight path angle decreases

as the vehicle accelerates. It is assumed that the change in

the drag is negligible. The speed increases, but the density

ratio decreases. Equation (56) reduces to

18
% . ,



3

° W - d(O)] (83)

Combining with Equation (55) and integrating gives

x
3

I= 1i -2 d(O)]Inw (84)

The inverse of this is required in order to integrate y

C(1 - U)
w=e (85) 

where .

x%

2
( (86)

,[r- d(O)]

Combining the approximate differential forms for u and y, sub-

stituting for w, and then integrating gives

X 3 (-Cu)i -C

y(O) CeC inu + E (87)y () Zi=l ii

Combining Equations k54) and (56), substituting Equation (85)

and integrating gives

-k t C

-ln - - • e CUu + 1 -y - e-(C + lY(O)

(88)

e 2 C[ "(e2CU- 2e + inu + - (2C) I)

fTC2 ) e=1 ii! (u 1)1

where

I¢



fT = T - d(0) (89)

Combining the approximate differential equations for e and u and
integrating gives

cX e

8 = 6(0) + "[+C + l)e - C - (Cu + )e -Cu] (90)

The solution for the nondimensional weight is

w = 1 - X 2 (91)

The exact and approximate solutions are presented in Table

8. The agreement is quite good.

Zero Angle-of-Attack, Power-Off

This segment is the path after burnout up to apogee. The

objective is to reach apogee with minimum loss of energy. This

corresponds to minimum drag which is zero angle-of-attack on a

point performance basis. Assume that the aerodynamic forces are

negligible relative to the gravity. Equations (56) and (57) can

be combined to give

du
d- - utany (92)

This is easily integrated to give

cosy(0)
cosy (93)

Substituting for u in Equation (57) and integrating gives

X3

tany tany(0) cosy(0) (94)
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Combining Equations (54) and (56) and integrating gives

A

in _ -- (U2 - 1) 95)
3

Combining Equations (58) and (57) and integrating gives

A

e = 8(0) - -- cos 2Y(0) tany - tanN(O) (96)
3

The comparison between the exact and approximate solutions

is presented in Table 9. The agreement is surprisingly good

considering the drag is neglected. It is desirable, however,

that the drag be negligible for the power-off coast to apogee.

The exact solution reaches apogee at 135.6 sec.

Complete Traiectories

With the relations derived earlier, it is easy to develop a

complete trajectory from launch to apogee. The initial condi-

tions are the launch conditions. Thereafter, the initial

conditions are the end conditions from the previous segment.

For comparison purposes, an approximate trajectory of 130

seconds was developed and compared with the exact. The ap-

proximate solutions were based upon the methods developed in the

previous sections. The first ten seconds of the trajectory was

maximum lift. The next twenty seconds was constant flight path

angle with power-on. The next thirty seconds was zero angle-of-

attack with power-on. The last seventy seconds was zero angle-

of-attack with power-off. The exact and approximate solutions

are presented in Table 10.

Next we turn our attention to optimal boost climb traec-

tory analysis.
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SECTION IV

OPTIMAL BOOST CLIMB PERFORMANCE

The objective of this analysis is to determine the

aerodynamic controls as a function of time such that a boost

ascension trajectory occurs in some optimal manner. In all

problems, the angle-of-attack is a control variable. In some

problems, the thrust vector angle is also a control variable.

When it is not, the thrust vector angle will be set equal to

zero.

The optimal controls are a function of the performance

payoff criterion. There are three payoffs that are of interest:

the first is maximum speed, the second is minimum propellant to

reach specified terminal conditions, and the third is minimum

time to reach apogee. The second payoff is equivalent to maxi-

mizing the burn out weight since the weight varies linearly with

time.

The relevant differential equations are Equations (54)

through (57). Equation (58) can be dropped since 8 is not a

payoff criterion; it does not contain the control, and the other

differential equations do not contain 8. Since x2 is a con-

stant, Equation (55) can be replaced with its integral

tBO

W 1- 0 - tR =OB

2 OBO < P 97)
= 1 - A8B

where t is the burnout time. It is assumed that the thrust

and aerodynamic coefficients are independent of altitude and

Mach number. This appears to be a gross approximation, but
generally the acceleration from subsonic to hypersonic speeds is
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very rapid for high thrust to weight configurations. At hyper-

sonic speeds, the aerodynamic coefficients will be a function of

only the angle-of-attack.

The boost is at maximum thrust until burnout. For some

problems, this is the terminal condition. For other problems,

the vehicle coasts to apogee after burnout. This corresponds to

Y(Of) = 0 (98)

The optimal trajectory problems are identified in Table 1i.

The solutions to Problems 4 and 9 are trivial. If the final

conditions are free, then minimum propellant or minimum time is

zero. Thus, the initial and final times are the same. Since

the propellant used is a function of time, Problems 5, 6, 7, and

8 are equivalent to 10, 11, 12, and 13, respectively.

The following examples will be addressed later on in this

section. In Problem 1, the payoff is the final speed and there

are no constraints. The remaining problems are apogee problems

and are defined as follows in Table 12.

Aerodynamic Relations

Since the drag and lift coefficients are respectively even

and odd functions, rewrite Equations (14) and 16) as follows

CD = KIsin3 L + CD (99)
0

C = Kisina.IsinacosL (100)L

where JxI means absolute value of x. For the configuration to

be used in this section, C = 1.035 and K = 35.30. In order to
0

develop necessary and sufficient conditions tor the optimal

controls, we need first and second derivative3 of CL and CD witi

respect to (. The derivatives are

<---.- ---.--'- -.-, - . " x -. , .-. . .. " -



CL K(2cos (- sin x)Isina (101)

C = K(2cos2  - 7sin ZX)coS X > 0

(102)

= -K(2cos 2  - 7sin2 O)cos% (X ( 0

CD = 3CL (103)

CD = 3CL (104)

The coefficients and their derivatives are presented in Figures

4 through 7. The range of x is that from -CL to + CL

The optimal control problem is considered next.

Optimal Control Problem

The approach to determining the solution of the optimal

control problem is given in Reference 2. The optimal control

problem is the maximization of the Hamiltonian with respect to

the control variables. The Hamiltonian is defined as follows

H =Pu + P + P a (105)
u 'Y a

where Pu' P I P are the costate variables associated with the
u Y a

state variables u, y, a. The necessary condition for a costate
variable x (u, y, or a) on an optimal trajectory is

O__l (106)
x ax

Consequently, three additional differential equations result.

If the thrust vector angle is free, there are three control

variables. Since 6 is the sum of 0. and 8S" only two can be

24 ~
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considered as independent. The choice is x and . If the
v

thrust vector is fixed, 6v = 0, then only a is free. Necessary

conditions for both cases will be addressed. Consider first

free Sv and (x. Introduce two control functions

F(8v ) CT (COS6 + PRsin8) (107)

G(m) F(o) - CD + PR CL (108)

where

P
T y

S= (X+v CT = uP (109)

The part of the Hamiltonian that is a function of 8 is

qS
H(& X P .- .F(&v) (111)

The part of the Hamiltonian that is a function of ( is

•m = X P .G(( ) (111)SH(o.) U (ilu

If 8v is unconstrained, optimal Svp & , is the solution of

3F(S
v

- =0 (1!12
v

Substitution gives

tan(x + S ) = P (113)

v Rk

If (. is unconstrained, optimal m, ( , is the solution of

OGUX)
- 0 (114)
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or

F - CD + PR CL =0 (115)

Since F. oF = 0 according to Equation (112), then x must be

the solution of

-CD +PRCL = 0 (116)

Substituting Equations (103), (100), and (101) gives

-3tanx + PR( 2 - tan Z ) = 0 (117)

We can solve for x as a function of PR or PR as a function of

a We choose the latter so that we can examine the Hamiltonian

as a function of x and 8v

Av

3tana

R 2 -tan Z A (118)

Thus, once (x is determined, PR is determined from Equation

(118) and &v is obtained from Equation (113). In Figure 8, P
v A A"R

is presented as a function of m . In Figure 9, is presentedA A

as a function of % . The functions F and G, evaluated at oL and
A are presented in Figures 10 and 11 as functions of (x and
CTLT*

In order that the Hamiltonian be a local maximum, it is

necessary that

H <0 (119)

and

H < 0 (120)
v v
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Both relations are evaluated for the optimal controls. In

Figures 12 and 13, F6vS and G. are presented. Since both

partial derivatives are negative, it follows from Equations

(110) and (111) that along the optimal trajectory

P >0 (121)
U-

From Equation (109) and Figure 8, it follows that if x ' 0,

_ 0, therefore, P < 0. If X > 0, PR 2 0, therefore, P > 0.

Furthermore, if a = 0, P = 0.

Yo

If the thrust vector angle is fixed, assume 6v = 0, then

along the optimal trajectory

G = F -C D  + P CL 0 (122).°
OL (X D R L

In this case, F # 0. The optimal angle-of-attack is the solu-

tion of

A A ACT(-sino + PRc sx ) - C + PR CL 0 (123)

Substituting Equations (103), (100), and (101) gives

Atinx A
CT (-sin + PRcos(x ) - 3Klsinx isin(x cosx

(124)

+ PRK( 2 cos 2X - sin x AIsinx I = 0

The optimal angle-of-attack is a function of PR' K, and CT.*

Previously it was a function of only PR' By substituting tan-

gent trigonometric relations for sine and cosine terms, Equation

(124) can be transformed to a cubic equation in tani

CT(-X + PR)(I + x - 3Klxlx + PRK( 2 - x2)!xl - 0 (125)

where
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x = tana (126)

Equation (125) can be solved for c as a function PR' K. and CT

or PR solved in terms of (*, K, and CT. Thus

CTx(I + x2 ) + 3Klxlx

PR =  (127)C T(1 + x ) + K(2 - x )Ix(

PR is presented in Figure 14. In Figure 15, G(L ) is presented.

G(x ) is presented in Figure 16.

For maximum Hamiltonian, Relation (119) must hold. From

Equation (111) it follows that along the optimal trajectory

P > 0 (128)U -

This agrees with the previous case. Thus for both situations,

free or fixed thrust vector angle, Equations (121) and (128)

ho ld.

We next turn our attention to the development of the op-

timal trajectory solutions.

Qptimal Trajectory Solutions

There are two ways to determine the optimal trajectory.

The first way involves determining the costate differential

equations according to Equation (106) and then integrating these

equations between appropriate boundary conditions The second

way is an extension of the first and involves developing dif-

ferential equations for the controls. These equations are also

a function of Equation (106).

The first approach will be employed here. Two differential

equations that involve the costate variables are required. Only

two are required since the costate variables can be itormalized
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with respect to P The differential equations are in terms of
U

PR and P5 where

P

P - (129)S u

From Equation (106), the differential equations are

PR = u'X3co s y PS-X1 SY  u 3 PR .coss + d)

(130)

u PR (Vs n cosy) + PRPsXlsinY

X~d(S? 
1 u3IP X-1 -nk - XPusin-y

S 3 Y d U'3nR - P - P Ss)I iny
(131)

1 T 1
-. X PsPR. -. sin&+ i.X 3 PSPRcosY + P1xlsinN

These equations and the trajectory equations are integrated

forward in time to the burnout condition. Optimal controls are

imposed everywhere along the trajectory. Initial guesses for

PS(0) and PR(0) or ox(0) are required. For problem 1, the final

flight path angle and altitude are free, thus

P s(tf = 0 PR(tf) = 0 (132)

Results are presented in Figures 17 through 23. The differences

for free Sv or 6v = 0 are negligible for the speed and altitude.

The payoffs for Problem 1 are presented in Table 13. Since the

difference in the speed for the first problem is negligible, the

remaining problems will be constrained by &v = 0.

For problems 2, 3, and 4, the optimal trajectory solutions

are presented in Figures 24 through 27. The initial values for

( and P. are presented in Table 14 along with the constraints

and optimal payoff. For reference purposes, the maximum speed

for Problem 1 and v = 0 is V(tf) = 6583 ft/sec and tg 60
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seconds. The maximum speeds for Problems 2 and 3 are less than

Problem 1. Also, the speeds for Problem 3 are less than Problem

2. The minimum time solutions for Problems 4 are less than the

corresponding maximum speeds for Problem 3. The flight path

angle solutions show that the minimum time solution pitches up

to a higher flight path angle. Once this is reached, the op-

timal angle-of-attack solution shows that there is a rapid pitch

over until the angle-of-attack for -CL is reached. This
MAX

angle-of-attack is followed until apogee is reached. This is

one of the primary differences between the controls in the two

problems. For minimum time to apogee, the initial pitch up is

faster and the pitch down is also rapid until -CL is reached.
LMAX

Recall that the angle-of-attack was limited to angles between

CLMx and +CL . A second difference is that the minimum
MAX MAX

time trajectory may reach apogee before burnout, whereas, the

maximum speed solution at apogee never occurs before burnout; it

must occur at or later than burnout.

.-
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SECTION V

CONCLUSIONS

Nominal and optimal boost climb trajectories were developed

for an air launched vehicle. The approximate nominal solutions

were in good agreement with the solutions obtained by numerical

integration of the differential equations of motion. The ad-

vantage of the approximate solutions is a rapid estimate of the

ascent of a rocket powered vehicle.

For the optimal trajectories, three payoffs were con-

sidered; maximum speed at burnout or apogee, minimum fuel to

apogee, and minimum time to apogee. The last two problems are

equivalent since the fuel burning rate is constant. Thrust

vectoring was considered, but the difference relative to no

vectoring was negligible for the problem of maximizing the speed

at burnout. As a result, all subsequent problems assumed no

thrust vectoring.

rn general, the optimal angle-of-attack decreased with

increasing tine. The change was greater for the minimum time

solution. For this case, a fast pitch up occurred initially and

then the angle-of-attack rapidly decreased to the angle-of-

attack for -CL . This gave the fastest pitch over to apogee.
MAX

The minimum time solution may reach apogee before burnout.

The emphasis is on reaching apogee before burning all propel-

lant. For the problem of maximum speed at apogee, all

propellant is used prior to or at apogee. The reason for this

is that as long as there is propellant, the vehicle will con-

tinue to accelerate.

The analysis has been limited to constant thrust and burn-

ing rate and a single booster. If the constants are variable,

then relationships as a function of the appropriate variables

31
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must be included. This will change the costate differential

equations if the engine variables are dependent upon any of the
state variables. If there is more than one booster, there may

be coast period between boosts. Care must be exercised to
insure that this possibility is properly accounted for.
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APPENDIX

CORRELATION BETWEEN EXPERIMENTAL AND

THEORETICAL AERODYNAMIC DATA

Seven different configurations were examined. Maximum

lift-to-drag ratio varied from approximately one to over four.

The seven configurations are the X24C, Reference 3, Super

Orbital Re-entry Test Integrated Environment (SORTIE), Reference

4, Shuttle Orbiter Vehicle 102, Reference 5, Advanced Manned

Interceptor (AMI), Reference 6, X20 Dynasoar, Reference 7,

Aerothermodynamic/Elastic Structural Systems Environmental Tests

(ASSET), Reference 8, and an optimized configuration from

Reference 9. The configurations are illustrated in Figure A-1

where the AMI has the highest experimental maximum L/D ratio and

the SORTIE is the lowest. In all but the optimized configura-

tion, either CL and CD, or CN and CA were available. If the

latter were available, then the data were transformed to CL and

CD. For the optimized configurations, only L/D distributions

were available.

The experimental data were obtained from wind tunnel tests.

The theoretical distribution were assumed to correspond to the

relations in Section II, Equations (14) and (16)

CL = Ksin2 cos6 (14)

CD = Ksin 3 + CD  (16)
D

It will be assumed that

6 = CX + O (17)

There are different ways for correlating the data. The

approach here was to determine K, CD and co such that a satis-
Do0

factory fit to L/D and CL was obtained. For each data set, a
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subset of the data was selected. The error is defined as fol-

lows

N

ERROR Z IEtheor) -E(exp)] +[CL(theor)- CL(exp)] )

i=N L

(A-I)

{ - E(exp)] +[Ksifl &cos-CL (exp)i =NI -sin 3S+ C

where N1 is the first point and N is the last point. The
1 2

objective was to minimize the error with respect to the

parameters C and K. The parameter C was obtained from the

minimization of the squared error between the therotical and

experimental values for L/D and was accomplished by employing a

golden section search technique. The minimization of the error

with respect to K was obtained by minimizing the error in CL.

For the optimized configuration only C was obtained. For all

but this configuration, ao was assumed to be zero. For this

configuration it appeared that mo = 40 gave the best fit to the

data.

The results are presented in Figures A-2 through A-8. The

emphasis was on a satisfactory fit to the L/D data in the neigh-

borhood of E*. Consequently, some of the data does not fit well

at larger angles-of-attack. If maneuvers at large angles-of-

attack are required, than the emphasis should be on the region

of interest. It can be seen that the experimental and theoreti-

cal distributions match quite well in the neighborhood of EA.

The values of N (total number of experimental points), Ni ,

N, C K, 6 and E are presented in Table A. The solutions
2 D0
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for 6 and E were obtained from Equations (20) and (23). For
A -

the optimum vehicle, it was assumed that E = 3, (o = 40, and 8

and C were computed from Equations (24) and (21). for the
purpose of this investigation, the theoretical distributions for

CL and CD are satisfactory.

3-/
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Table 1

ATMOSPHERIC PARAMETERS

A B

0 < h < 25,000 feet 0.9858 x 10 - 2  -0.3209 x 10 - 4

25,000 < h < 150,000 feet 0.4231 -0.4695 x 10- 4

150,000 < h < 250,000 feet -0.6150 -0.3956 x 10- 4

250,000 < h 3.734 -0.5704 x 10- 4

Table 2

EXPONENTIAL DENSITY ERRORS

Altitude Error

(ft) (%)

0 -1.0

25,000 -1.0

50,000 4.1

75,000 -3.7

100,000 -1.3

125,000 -3.4

150,000 -3.0

175,000 -0.8

200,000 3.9

225,000 5.8

250,000 -4.4

275,000 1.8

300,000 -3.1
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Table 3

AERODYNAMIC PARAMETERS

E6 (Deg) CD /K CD (8 )/CD

1 29.32 .0916 2.28

2 17.57 .0159 2.73

3 12.24 .0051 2.86

4 9.34 .0021 2.92

Table 4

EXACT AND APPROXIMATE AERODYNAMIC PARAMETERS

EXACT APPROXIMATE

C /K E CL*/K C A/C E C */K C */C
D___L D D 0  L DD 0

0.3675 0.5 0.320 1.74 0.74 0.814 3

0.0916 1.0 0.209 2.28 1.17 0.323 3

0.0342 1.5 0.132 2.57 1.63 0.167 3

0.0159 2.0 0.087 2.73 2.10 0.100 3

0.0051 3.0 0.044 2.86 3.07 0.047 3

0.0022 4.0 0.026 2.92 4.05 0.027 3
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Table 5

SAMPLE BOOSTER PROPULSION CHARACTERISTICS

Booster T/W(0) t B(sec) 6V(ft/sec) N PROP/W(0)

1 2.58 38.8 4200 0.44

2 2.94 3.9 5300 0.54

3 15.69 5.4 3500 0.40

4 18.40 3.2 2400 0.30

5 1.87 28.9 2100 0.31

6 3.75 26.9 4300 0.45

7 20.17 4.3 3600 0.40

8 9.42 5.5 1900 0.25

9 21.41 3.4 2800 0.31

10 16.40 3.0 1800 0.20

11 2.18 60.0 5900 0.49

12 2.84 60.0 8900 0.64

13 2.66 59.3 9900 0.68

14 3.00 60.1 9500 0.67

15 2.54 60.1 7200 0.56

16 2.71 59.0 7700 0.58

17 2.51 60.0 8200 0.69

4.
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Table 6

INITIAL ROTATION RESULTS

V(0) = 700 ft/sec, N(O) = 00, h(0) = 40,000 ft, 8(0) = 00

W(0) = 14,997 ibs, W = 172.5 Ib/sec, g = 32.174 ft/sec2

R = 20,925,780 ft, T = 37,600 ib, CD(0) = 2.115, CL (0) = 6.920,

tR = 10.0 sec, & = 250, S = 10.9 ft2

EXACT APPROXIMATE

*t v h 6 V h 6

0 700 0 40,000 0 700 0 40,000 0

1 765 2.18 40,000 .0020 766 2.01 40,000 .0020

2 828 4.56 40,100 .0042 831 4.22 40,100 .0042

3 889 7.13 40,100 .0065 895 6.64 40,100 .0067

4 948 9.88 40,300 .0090 958 9.27 40,300 .0093

1004 12.79 40,500 .0116 1020 12.11 40,500 .0122

6 1058 15.84 40,700 .0143 1081 15.16 40,700 .0152

7 1109 19.03 40,100 .0172 1141 18.43 41,100 .0185

8 1158 22.34 41,500 .0201 1199 21.92 41,500 .0220

9 1204 25.75 41,900 .0230 1256 25.62 42,100 .0258

10 1248 29.25 42,500 .0260 1311 29.54 42,800 .0297
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Table 7

CONSTANT FLIGHT PATH, PONER-ON COMPARISONS

The conditions from the exact solution at the end of the initial

pitch-up, t = 10 seconds, are the beginning of the constant flight

path, power-on trajectory.

0 0
V(0) = 1248 ft/sec, yc = 29.25 , h(0) = 42,500 ft, e(O) = .026

W(0) = 13,272 lb, W = 172.5 lb/sec, T = 37,600 ib, tR = 50 sec

& = 0, CD(0) = 0.95, S = 10.9 ft2

EXACT APPROXIMATE

Lt V h E) v h e

0 1248 42,500 .026 1248 42,500 .026

10 1903 50,300 .063 1958 50,300 .064

20 2690 61,800 .117 2809 61,900 .121

30 3701 77,600 .192 3855 78,000 .200
40 5089 99,400 .295 5190 100,000 .307

50 7095 129,500 .437 7044 130,000 .453
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Table 8

ZERO ANGLE-OF-ATTACK, POWER-ON COMPARISONS

The conditions from the exact solution at t = 30 seconds are the

initial conditions for the zero angle-of-attack, power-on trajec-

tory.

0 0
V(O) = 2707 ft/sec, y(0) = 30 , h(O) = 62,000 ft, e(0) = 0.118

W(0) = 9787.5 ib, W = 172.5 ib/sec, CD(0) = 0.75, S = 10.9 ft2 ,

T = 38,500 lb, o = 0, tR = 30 sec

EXACT APPROXIMATE

At v h e v I h e

0 2707 30.0 62,000 0.118 2707 30.0 62,000 0.118

5 3193 27.3 69,100 0.154 3268 26.9 69,400 0.159

10 3753 24.9 76,700 0.196 3886 24.3 77,300 0.208

15 4405 23.0 84,900 0.247 4573 22.1 85,900 0.266

20 5173 21.2 93,900 0.307 5349 20.3 95,000 0.333

25 6087 19.8 103,700 0.379 6238 18.7 104,800 0.413

30 7193 18.6 114,600 0.464 7281 17.3 115,400 0.504
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Table 9

ZERO ANGLE-OF-ATTACK POWER-OFF COMPARISONS

The initial conditions correspond to the exact solution at bur-

nout, t = 60 seconds.

0 0
V(O) = 7193 ft/sec, y(O) = 18.6 , h(0) = 117,400 ft, e(0) = 0.464

= 4612 pounds, (x = 0, tR = 70 sec.

EXACT APPROXIMATE

_ v y h v I h

0 7193 18.6 114,600 0.464 7193 18.6 114,600 0.464

10 6990 16.3 135,800 0.648 7097 16.1 135,900 0.651

* 20 6863 13.9 153,800 0.830 7014 13.6 154,100 0.837

30 6770 11.5 168,900 1.010 6946 11.0 169,000 1.023

40 6699 9.0 180,900 1.190 6891 8.4 180,600 1.210

50 6646 6.5 189,900 1.369 6852 5.7 189,100 1.397

60 6609 4.0 196,000 1.548 6827 3.1 194,300 1.583

70 6588 1.4 199,100 1.727 6817 0.4 196,400 1.770

The exact solution reaches apogee at 135.6 sec.

V = 6582 ft/sec

n = 199,600 ft

8 = 1.8270

The approximate solution reaches apogee at t = 131.3 sec.

V = 6817 ft/sec

h = 196,400 ft

e = 1.7950

44

% • % " %• -. '. '. % ". ". ° %.. - ". .. ,%. -. % - -.-. - .. . % ". . .'% . . % % % ." - .% -



Table 10

COMPLETE TRAJECTORY COMPARISONS

EXACT APPROXI MATE

t v h e v h _

0 700 0 40,000 0 700 0 40,000 0

10 1248 29.2 42,500 0.026 1311 29.5 42,800 0.030

30 2690 29.2 61,800 0.117 2862 29.5 62,900 0.127

60 7193 18.6 114,600 0.464 7376 17.3 117,500 0.524

130 6580 1.4 199,100 1.727 7043 -0.5 192,200 1.873
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Table 11

OPTIMAL CONTROL PROBLEMS

MAXIMUM

PROBLEM PAYOFF CONSTRAINTS

1 V(t f) none

2 V(tf) Y(tf) = 0

3 V(tf) Y(tf) = 0, h(tf) specified

4 W(t f) none

5 W(tf) y(tf) = 0

6 W(tf) Y(tf) = 0, h(tf) specified

7 W(tf) Y(tf) = 0, V(tf) specified

8 W(tf) y(tf) = 0, V(tf) & h(tf) specified

9 -tf none

10 -tf Y(tf) 0

11 -tf Y(tf) = 0, h(tf) specified

12 -tf Y(tf) = 0, V(tf) specified

13 -Yf Y(tf) = 0, V(tf) & h(tf) specified

6'
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Table 12

SELECTED OPTIMAL CONTROL PROBLEMS

y(t) = 0

PROBLEM PAYOFF CONSTRAINT

2 V(tf ) none

3 V(tf ) h(tf )

4 -tf h(tf) 

Table 13

PROBLEM 1 RESULTS

& V (f (0) P (0)
V f__ _ _S

free 6609 ft/sec 31.90 -5.80

0 6583 ft/sec 34.80 -5.34
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Table 14

OPTIMAL TRAJECTORY RESULTS

Problem %. (0) P (0) Payoff tf(SEC) Constraint

2 35.86 -6.601 V(t f)=6256ft/sec 60 none

3a 36.05 -6.555 =6235ft/sec 60.4 h(t f)=l00,000ft

3b 35.95 -6.093 =5935ft/sec 99.9 =150,OO0ft

4a 40.20 -7.732 t f=48. 7sec --- =100,OO0ft

4b 39.30 -6.331 =74.3sec ---- =150,OO0ft

Tabl1e A

AERODYNAMIC PARAMETERS

Vehicle N N 1  N 2  C D K 6 (Deg) E

AMI 5 3 3 .0081 4.279 8.86 4.23

OPTIMUM 6 - - - - 12.25 3.00

X24C 7 4 5 .0222 2.705 14.29 2.54

DYNASOAR 7 3 3 .0488 2.411 19.06 1.83

SHUTTLE 11 1 11 .0543 2.821 18.77 1.86

ASSET 6 3 3 .1276 3.303 23.43 1.43

SORTIE 7 5 7 .1181 1.581 29.11 1.09
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